Tinnitus, Unipolar Brush Cells, and Cerebellar Glutamatergic Function in an Animal Model

نویسندگان

  • Carol A. Bauer
  • Kurt W. Wisner
  • Joan S. Baizer
  • Thomas J. Brozoski
چکیده

Unipolar brush cells (UBCs) are excitatory interneurons found in the dorsal cochlear nucleus (DCN) and the granule cell layer of cerebellar cortex, being particularly evident in the paraflocculus (PFL) and flocculus (FL). UBCs receive glutamatergic inputs and make glutamatergic synapses with granule cells and other UBCs. It has been hypothesized that UBCs comprise local networks of tunable feed-forward amplifiers. In the DCN they might also participate in feed-back amplification of signals from higher auditory centers. Recently it has been shown that UBCs, in the vestibulocerebellum and DCN of adult rats, express doublecortin (DCX), previously considered a marker of newborn and migrating neurons. In an animal model, both the DCN, and more recently the PFL, have been implicated in contributing to the sensation of acoustic-exposure-induced tinnitus. These studies support the working hypothesis that tinnitus emerges after loss of peripheral sensitivity because inhibitory processes homeostatically down regulate, and excitatory processes up regulate. Here we report the results of two sequential experiments that examine the potential role of DCN and cerebellar UBCs in tinnitus, and the contribution of glutamatergic transmission in the PFL. In Experiment 1 it was shown that adult rats with psychophysical evidence of tinnitus induced by a single unilateral high-level noise exposure, had elevated DCX in the DCN and ventral PFL. In Experiment 2 it was shown that micro-quantities of glutamatergic antagonists, delivered directly to the PFL, reversibly reduced chronically established tinnitus, while similarly applied glutamatergic agonists induced tinnitus-like behavior in non-tinnitus controls. These results are consistent with the hypothesis that UBC up regulation and enhanced glutamatergic transmission in the cerebellum contribute to the pathophysiology of tinnitus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0306-4522(00)00123-8

Unipolar brush cells are a class of interneurons in the granular layer of the mammalian cerebellum that receives excitatory mossy fiber synaptic input in the form of a giant glutamatergic synapse. Previously, it was shown that the unipolar brush cell axon branches within the granular layer, giving rise to large terminals. Single mossy fiber stimuli evoke a prolonged burst of firing in unipolar ...

متن کامل

ON and OFF Unipolar Brush Cells Transform Multisensory Inputs to the Auditory System

Unipolar brush cells (UBCs) of the dorsal cochlear nucleus (DCN) and vestibular cerebellar cortex receive glutamatergic mossy fiber input on an elaborate brush-like dendrite. Two subtypes of UBC have been established based on immunohistochemical markers and physiological profiles, but the relation of these subtypes to the response to mossy fiber input is not clear. We examined the synaptic phys...

متن کامل

Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter.

Unipolar brush cells (UBCs) are glutamatergic interneurons in the cerebellar cortex and dorsal cochlear nucleus. We studied the development of UBCs, using transcription factor Tbr2/Eomes as a marker for UBCs and their progenitors in embryonic and postnatal mouse cerebellum. Tbr2+ UBCs appeared to migrate out of the upper rhombic lip via two cellular streams: a dorsal pathway into developing cer...

متن کامل

Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex.

Unipolar brush cells (UBCs) of the mammalian vestibulocerebellum receive mossy fiber projections primarily from the vestibular ganglion and vestibular nuclei. Recently, the axons of UBCs have been shown to generate an extensive system of cortex-intrinsic mossy fibers, which resemble traditional cerebellar mossy fiber afferents and synapse with granule cell dendrites and other UBCs. However, the...

متن کامل

Dynamic metabotropic control of intrinsic firing in cerebellar unipolar brush cells.

Neuronal firing is regulated by the complex interaction of multiple depolarizing and hyperpolarizing currents; intrinsic firing, which defines the neuronal ability to generate action potentials in the absence of synaptic excitation, is particularly sensitive to modulation by currents that are active below the action potential threshold. Cerebellar unipolar brush cells (UBCs) are excitatory gran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013